Computationally Efficient Multiscale Neural Networks Applied to Fluid Flow in Complex 3D Porous Media

Author:

Santos Javier E.ORCID,Yin Ying,Jo Honggeun,Pan Wen,Kang Qinjun,Viswanathan Hari S.,Prodanović Maša,Pyrcz Michael J.,Lubbers Nicholas

Abstract

AbstractThe permeability of complex porous materials is of interest to many engineering disciplines. This quantity can be obtained via direct flow simulation, which provides the most accurate results, but is very computationally expensive. In particular, the simulation convergence time scales poorly as the simulation domains become less porous or more heterogeneous. Semi-analytical models that rely on averaged structural properties (i.e., porosity and tortuosity) have been proposed, but these features only partly summarize the domain, resulting in limited applicability. On the other hand, data-driven machine learning approaches have shown great promise for building more general models by virtue of accounting for the spatial arrangement of the domains’ solid boundaries. However, prior approaches building on the convolutional neural network (ConvNet) literature concerning 2D image recognition problems do not scale well to the large 3D domains required to obtain a representative elementary volume (REV). As such, most prior work focused on homogeneous samples, where a small REV entails that the global nature of fluid flow could be mostly neglected, and accordingly, the memory bottleneck of addressing 3D domains with ConvNets was side-stepped. Therefore, important geometries such as fractures and vuggy domains could not be modeled properly. In this work, we address this limitation with a general multiscale deep learning model that is able to learn from porous media simulation data. By using a coupled set of neural networks that view the domain on different scales, we enable the evaluation of large ($$>512^3$$ > 512 3 ) images in approximately one second on a single graphics processing unit. This model architecture opens up the possibility of modeling domain sizes that would not be feasible using traditional direct simulation tools on a desktop computer. We validate our method with a laminar fluid flow case using vuggy samples and fractures. As a result of viewing the entire domain at once, our model is able to perform accurate prediction on domains exhibiting a large degree of heterogeneity. We expect the methodology to be applicable to many other transport problems where complex geometries play a central role.

Funder

Laboratory Directed Research and Development

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3