PoroTwin: A Digital Twin for a FluidFlower Rig

Author:

Keilegavlen EirikORCID,Fonn Eivind,Johannessen Kjetil,Eikehaug Kristoffer,Both Jakub W.ORCID,Fernø Martin,Kvamsdal Trond,Rasheed Adil,Nordbotten Jan M.

Abstract

AbstractWe present a framework for integrated experiments and simulations of tracer transport in heterogeneous porous media using digital twin technology. The physical asset in our setup is a meter-scale FluidFlower rig. The digital twin consists of a traditional physics-based forward simulation tool and a correction technique which compensates for mismatches between simulation results and observations. The latter augments the range of the physics-based simulation and allows us to bridge the gap between simulation and experiments in a quantitative sense. We describe the setup of the physical and digital twin, including data transfer protocols using cloud technology. The accuracy of the digital twin is demonstrated on a case with artificially high diffusion that must be compensated by the correction approach, as well as by simulations in geologically complex media. The digital twin is then applied to control tracer transport by manipulating fluid injection and production in the experimental rig, thereby enabling two-way coupling between the physical and digital twins.

Funder

Wintershall Dea

University of Bergen

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Reference33 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems. Software available from https://www.tensorflow.org/ (2015)

2. Ali, M., Umer, R., Khan, K.: A virtual permeability measurement framework for fiber reinforcements using micro CT generated digital twins. Int. J. Lightweight Mater. Manuf. 3(3), 204–216 (2020)

3. Arts, R., Eiken, O., Chadwick, A., Zweigel, P., Van Der Meer, B., Kirby, G.: Seismic monitoring at the Sleipner underground $$\text{CO}_{2}$$ storage site (North Sea). Geol. Soc. Lond. Spec. Publ. 233(1), 181–191 (2004)

4. Aziz, K., Settari, T.: Petroleum Reservoir Simulation. Applied Science Publishers (1979)

5. Benali, B., Føyen, T.L., Alcorn, Z.P., Haugen, M., Gauteplass, J., Kovscek, A.R., Fernø, M.A.: Pore-scale bubble population dynamics of $$\text{CO}_{2}$$-foam at reservoir pressure. Int. J. Greenh. Gas Control 114, 103607 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3