Publisher
Springer Science and Business Media LLC
Subject
General Chemical Engineering,Catalysis
Reference56 articles.
1. Allen, R.D., Doherty, T.J., Erikson, R.L., Wiles, L.E. (1983) Factors affecting storage of compressed air in porous rock reservoirs. Technical report PNL-4707, Pacific Northwest Laboratory
2. Allen, R.D., Doherty, T.J., Istvan, J.A., Pereira, J.C., Schainker, R.B. (1984) Preliminary results from the pittsfield aquifer field test applicable to commercialization of compressed air energy storage technology. In: Intersociety Energy Conversion Engineering Conference, San Francisco, USA, pp. 1081–1090
3. Andrew, M., Bijeljic, B., Blunt, M.J.: Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: curvature, snap-off, and remobilization of redidual CO2. Water Resour. Res. 50(11), 8760–8774 (2014).
https://doi.org/10.1002/2014WR015970
4. Avraam, D.G., Payatakes, A.C.: Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207–236 (1995).
https://doi.org/10.1017/S0022112095001698
5. Bazylak, A., Berejnov, V., Markicevic, B., Sinton, D., Djilali, N., Columbia, B. (2008) A microfluidic pore network approach to investigate water transport in fuel cell porous transport layers. In: Proceedings of the Sixth International ASME Conference on Nanochannels, Microchannels and Minichannels, ICNMM 2008-62349, Darmstadt, Germany