Fractional-Flow Theory for Non-Newtonian Surfactant-Alternating-Gas Foam Processes

Author:

Salazar Castillo Rodrigo O.ORCID,Ter Haar Sterre F.,Ponners Christopher G.,Bos Martijn,Rossen William

Abstract

Abstract Foam can improve sweep efficiency in gas-injection-enhanced oil recovery. Surfactant-alternating-gas (SAG) is a favored method of foam injection. Laboratory data indicate that foam can be non-Newtonian at low water fractional flow fw, and therefore during gas injection in a SAG process. We investigate the implications of this finding for mobility control and injectivity, by extending fractional-flow theory to gas injection in a non-Newtonian SAG process in radial flow. We make most of the standard assumptions of fractional-flow theory (incompressible phases, one-dimensional displacement through a homogeneous reservoir, instantaneous attainment of local equilibrium), excluding Newtonian mobilities. For this initial study, we ignore the effect of changing or non-uniform oil saturation on foam. Non-Newtonian behavior at low fw implies that the limiting water saturation for foam stability varies as superficial velocity decreases with radial distance from the well. We discretize the domain radially and perform Buckley–Leverett analysis on each narrow increment in radius. Solution characteristics move outward with fixed fw. We base the foam model parameters and non-Newtonian behavior on laboratory data in the absence of oil. We compare results to mobility and injectivity determined by conventional simulation, where grid resolution is usually limited. For shear-thinning foam, mobility control improves as the foam front propagates from the well, but injectivity declines somewhat with time. This change in mobility ratio is not that at steady state at fixed water fractional flow in the laboratory, however, because the shock front in a non-Newtonian SAG process does not propagate at fixed fractional flow (though individual characteristics do). Moreover, the shock front is not governed by the conventional condition of tangency to the fractional-flow curve, though it continually approaches this condition. Injectivity benefits from the increased mobility of shear-thinning foam near the well. The foam front, which maintains a constant dimensionless velocity for Newtonian foam, decelerates somewhat with time for shear-thinning foam. For shear-thickening foam, mobility control deteriorates as the foam front advances, though injectivity improves somewhat with time. Overall, however, injectivity suffers from reduced foam mobility at high superficial velocity near the well. The foam front accelerates somewhat with time. Conventional simulators cannot adequately represent these effects, or estimate injectivity accurately, in the absence of extraordinarily fine grid resolution near the injection well.

Funder

Instituto Mexicano del Petróleo

Consejo Nacional de Ciencia y Tecnología

Shell

PEMEX

ConocoPhillips

Equión Energía

Neptune Energy

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3