Equity in the Police Districting Problem: Balancing Territorial and Racial Fairness in Patrolling Operations

Author:

Liberatore FedericoORCID,Camacho-Collados Miguel,Quijano-Sánchez Lara

Abstract

Abstract Objectives The Police Districting Problem concerns the definition of patrol districts that distribute police resources in a territory in such a way that high-risk areas receive more patrolling time than low-risk areas, according to a principle of territorial fairness. This results in patrolling configurations that are efficient and effective at controlling crime but that, at the same time, might exacerbate racial disparity in police stops and arrests. In this paper, an Equitable Police Districting Problem that combines crime-reduction effectiveness with racial fairness is proposed. The capability of this model in designing patrolling configurations that find a balance between territorial and racial fairness is assessed. Also, the trade-off between these two criteria is analyzed. Methods The Equitable Police Districting Problem is defined as a mixed-integer program. The objective function is formulated using Compromise Programming and Goal Programming. The model is validated on a real-world case study on the Central District of Madrid, Spain, and its solutions are compared to standard patrolling configurations currently used by the police. Results A trade-off between racial fairness and crime control is detected. However, the experiments show that including the proposed racial criterion in the optimization of patrol districts greatly improves racial fairness with limited detriment to the policing effectiveness. Also, the model produces solutions that dominate the patrolling configurations currently in use by the police. Conclusions The results show that the model successfully provides a quantitative evaluation of the trade-off between the criteria and is capable of defining patrolling configurations that are efficient in terms of both racial and territorial fairness.

Funder

Ministerio de Ciencia, Innovación y Universidades

H2020 Marie Sklodowska-Curie Actions

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

Springer Science and Business Media LLC

Subject

Law,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3