Author:
Wang Meizhong,Chen Jiecheng,Fan Dashan,Zhao Junyan
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Burq, N., Joly, R.: Exponential decay for the damped wave equation in unbounded domains. Commun. Contemp. Math. 18(6), 1650012–27 (2016). https://doi.org/10.1142/S0219199716500127
2. Gerbi, S., Said-Houari, B.: Exponential decay for solutions to semilinear damped wave equation. Discrete Contin. Dyn. Syst. Ser. S 5(3), 559–566 (2012). https://doi.org/10.3934/dcdss.2012.5.559
3. Kleinhenz, P.: Decay Rates for the Damped Wave Equation on The Torus, p. 85. ProQuest LLC, Ann Arbor (2020). Thesis (Ph.D.)—Northwestern University. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004 &rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation &res_dat=xri:pqm &rft_dat=xri:pqdiss:28087953
4. Messaoudi, S.A., Al-Smail, J.H., Talahmeh, A.A.: Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities. Comput. Math. Appl. 76(8), 1863–1875 (2018). https://doi.org/10.1016/j.camwa.2018.07.035
5. Pan, Y.: The damped wave equation and associated polymer (2023). arXiv:2310.01631