The Equidistant Dimension of Graphs

Author:

González A.ORCID,Hernando C.ORCID,Mora M.ORCID

Abstract

AbstractA subset S of vertices of a connected graph G is a distance-equalizer set if for every two distinct vertices $$x, y \in V (G) {\setminus } S$$ x , y V ( G ) \ S there is a vertex $$w \in S$$ w S such that the distances from x and y to w are the same. The equidistant dimension of G is the minimum cardinality of a distance-equalizer set of G. This paper is devoted to introduce this parameter and explore its properties and applications to other mathematical problems, not necessarily in the context of graph theory. Concretely, we first establish some bounds concerning the order, the maximum degree, the clique number, and the independence number, and characterize all graphs attaining some extremal values. We then study the equidistant dimension of several families of graphs (complete and complete multipartite graphs, bistars, paths, cycles, and Johnson graphs), proving that, in the case of paths and cycles, this parameter is related to 3-AP-free sets. Subsequently, we show the usefulness of distance-equalizer sets for constructing doubly resolving sets.

Funder

Universidad de Sevilla

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference44 articles.

1. Alspach, B.: Johnson graphs are Hamilton-connected. Ars Math. Contemp. 6, 21–23 (2013)

2. Aslam, M., Ali, A.: Some results on induced subgraphs of Johnson graphs. Int. Math. Forum 7(9–12), 445–454 (2012)

3. Bailey, R.F., Cáceres, J., Garijo, D., González, A., Márquez, A., Meagher, K., Puertas, M.L.: Resolving sets for Johnson and Kneser graphs. Eur. J. Comb. 34(4), 736–751 (2013)

4. Bautista-Santiago, C., Cano, J., Fabila-Monroy, R., Flores-Peñaloza, D., González-Aguilar, H., Lara, D., Sarmiento, E., Urrutia, J.: On the connectedness and diameter of a geometric Johnson graph. Discrete Math. Theor. Comput. Sci. 15(3), 21–30 (2013)

5. Behrend, F.A.: On sets of integers which contain no three in arithmetic progression. Proc. Natl. Acad. Sci. 23, 331–332 (1946)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3