Abstract
AbstractWe study properties of Wilder, strongly Wilder, continuumwise Wilder, D, $$D^*$$
D
∗
, and $$D^{**}$$
D
∗
∗
Hausdorff continua. We present an example of a colocally connected continuum that is not a $$D^*$$
D
∗
-continuum, answering a question by Espinoza and Matsuhashi. We give several positive answers to this question for unicoherent continua. We also present some equivalences for the class of homogeneous Hausdorff continua with the property of Kelley.
Funder
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
Vicerrectoría de Investigación y Extensión, Universidad Industrial de Santander
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Bellamy, D.P., Porter, K.F.: A homogeneous continuum that is non-Effros. Proc. Am. Math. Soc. 113, 593–598 (1991)
2. Charatonik, J.J., Macías, S.: Mappings of some hyperspaces. JP J. Geom. Topol. 4, 53–80 (2004)
3. Charatonik, W.J.: A homogeneous continuum without the property of Kelley. Topol. Appl. 96, 209–216 (1999)
4. Engelking, R.: General Topology, Sigma Series in Pure Mathematics, vol. 6. Heldermann, Berlin (1989)
5. Espinoza, B., Matsuhashi, E.: Weakly Whitney preserving mappings. Topol. Appl. 262, 90–108 (2019)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献