Clairaut Conformal Submersions

Author:

Meena KiranORCID,Zawadzki TomaszORCID

Abstract

AbstractThe aim of this paper is to introduce Clairaut conformal submersions between Riemannian manifolds. First, we find necessary and sufficient conditions for conformal submersions to be Clairaut conformal submersions. In particular, we obtain Clairaut relation for geodesics on the total manifolds of conformal submersions, and prove that Clairaut conformal submersions have constant dilation along their fibers, which are totally umbilical, with mean curvature being gradient of a function. Further, we calculate the scalar and Ricci curvatures of the vertical distributions of the total manifolds. Moreover, we find a necessary and sufficient condition for Clairaut conformal submersions to be harmonic. For a Clairaut conformal submersion we find conformal changes of the metric on its domain or image, that give a Clairaut Riemannian submersion, a Clairaut conformal submersion with totally geodesic fibers, or a harmonic Clairaut submersion. Finally, we give two non-trivial examples of Clairaut conformal submersions to illustrate the theory and present a local model of every Clairaut conformal submersion with integrable horizontal distribution.

Publisher

Springer Science and Business Media LLC

Reference25 articles.

1. Allison, D.: Lorentzian Clairaut submersions. Geom. Dedicata. 63, 309–319 (1996)

2. Aso, K., Yorozu, S.: A generalization of Clairaut’s theorem and umbilical foliations. Nihonkai Math. J. 2, 139–153 (1991)

3. Baird, P., Wood, J.C.: Harmonic Morphisms between Riemannian Manifolds. Clarendon Press, Oxford (2003)

4. Besse, A.L.: Einstein Manifolds. Springer-Verlag, Berlin (1987)

5. Bishop, R.L.: Clairaut submersions. In: Differential Geometry (in Honor of K. Yano), Kinokuniya, Tokyo, pp. 21–31 (1972)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clairaut Semi-invariant Riemannian Maps to Kähler Manifolds;Mediterranean Journal of Mathematics;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3