Abstract
AbstractIn this paper, we investigate a nonlinear differential inclusion with Dirichlet boundary conditions containing a weak Laplace operator of fractional orders (defined via the spectral decomposition of the Laplace operator $$-{\varDelta }$$
-
Δ
under Dirichlet boundary conditions). Using variational methods, we characterize solutions of such a problem. Our approach is based on tools from convex analysis (properties of a Legendre–Fenchel transform).
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Notices Am. Math. Soc. 51, 1336–1347 (2004)
2. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization. SIAM-MPS, Philadelphia (2006)
3. Auchmuty, G.: Variational principles for finite dimensional initial value problems. Contemp. Math. 426, 45–56 (2007)
4. Barrios, B., Colorado, E., de Pablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133–6162 (2012)
5. Bermudez, A., Saguez, C.: Optimal control of a Signorini problem. SIAM J. Control Optim. 25, 576–582 (1987)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献