Generalized Derivatives and Optimality Conditions in Nonconvex Optimization

Author:

Yalcin Gulcin DincORCID,Kasimbeyli RefailORCID

Abstract

AbstractIn this paper, we study the radial epiderivative notion for nonconvex functions, which extends the (classical) directional derivative concept. The paper presents new definition and new properties for this notion and establishes relationships between the radial epiderivative, the Clarke’s directional derivative, the Rockafellar’s subderivative and the directional derivative. The radial epiderivative notion is used to establish new regularity conditions without convexity conditions. The paper presents explicit formulations for computing the radial epiderivatives in terms of weak subgradients and vice versa. We also present an iterative algorithm for approximate computing of radial epiderivatives and show that the algorithm terminates in a finite number of iterations. The paper analyzes necessary and sufficient conditions for global optimums in nonconvex optimization via the radial epiderivatives. We formulate a necessary and sufficient condition for a global descent direction for radially epidifferentiable nonconvex functions. All the properties and theorems presented in this paper are illustrated and interpreted on examples.

Funder

Türkiye Bilimsel ve Teknolojik Arastirma Kurumu

Eskisehir Technical University

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. Abbasi, M., Kruger, A.Y., Thera, M.: Enlargements of the Moreau–Rockafellar subdifferential. Set-Valued Var. Anal. 29(3), 701–719 (2021)

2. Acar, M., Kasimbeyli, R.: Polyhedral conic functions based classification method, and application in noisy data. J. Ind. Manag. Optim. 17(6), 3493–3508 (2021)

3. Aubin, J.P.: Contingent derivatives of set-valued maps and existence of solutions to nonlinear imclusions and differential inclusions. In: Nachbin, L. (ed.) Mathematical Analysis and Applications, pp. 160–232. Supplementary Studies, New York, USA: 7A, Academic Press, Part A, Advances in Mathematics (1982)

4. Azimov, A., Gasimov, R.: On weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization. Int. J. Appl. Math. 1, 171–192 (1999)

5. Azimov, A., Gasimov, R.: Stability and duality of nonconvex problems via augmented Lagrangian. Cybern. Syst. Anal. 3, 403–417 (2002)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3