Abstract
AbstractWe give some structural formulas for the family of matrix-valued orthogonal polynomials of size $$2\times 2$$
2
×
2
introduced by C. Calderón et al. in an earlier work, which are common eigenfunctions of a differential operator of hypergeometric type. Specifically, we give a Rodrigues formula that allows us to write this family of polynomials explicitly in terms of the classical Jacobi polynomials, and write, for the sequence of orthonormal polynomials, the three-term recurrence relation and the Christoffel–Darboux identity. We obtain a Pearson equation, which enables us to prove that the sequence of derivatives of the orthogonal polynomials is also orthogonal, and to compute a Rodrigues formula for these polynomials as well as a matrix-valued differential operator having these polynomials as eigenfunctions. We also describe the second-order differential operators of the algebra associated with the weight matrix.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献