Abstract
AbstractA key question in archaeobotany concerns the role of herbivore dung in contributing plant remains to archaeobotanical assemblages. This issue has been discussed for at least 40 years and has motivated several archaeobotanical studies on identifying dung-derived deposition of plant remains. Meanwhile, microarchaeological methods have developed and continue to be developed for detecting dung in archaeological sediments, and multi-proxy methodologies are being used to study the botanical components of dung-associated sediments. Combining these approaches, the authors recently led a study incorporating different botanical proxies (seeds, pollen, phytoliths) with geoarchaeological sedimentary analysis to compare dung pellets and associated sediments. This approach presents a new way to gauge the contribution of dung-derived plant remains in archaeobotanical assemblages, which is further explored in this follow-up paper. The present paper further highlights how multi-proxy archaeobotanical investigation of individual dung pellets can provide information on seasonality, grazing range and herding practices. Their short production and deposition time make herbivore dung pellets time capsules of agropastoral activity, a useful spatio-temporal unit of analysis, and even a type of archaeological context in their own right. Adding different biomolecular and chemical methods to future multi-proxy archaeobotanical investigation of herbivore dung will produce invaluable high-resolution reconstructions of dung microbiomes. Ultimately, unpacking the contents of ancient dung pellets will inform on the species, physical characteristics, diet, niche, and disease agents of the ancient pellets’ producers. Expanded datasets of such dung-derived information will contribute significantly to the study of ecosystem transformation as well as the long-term development of agriculture and pastoralism.
Funder
Council for Higher Education
University of Cambridge
Publisher
Springer Science and Business Media LLC
Subject
Paleontology,Plant Science,Archeology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献