Holocene vegetation history and human impact in the eastern Italian Alps: a multi-proxy study on the Coltrondo peat bog, Comelico Superiore, Italy

Author:

Segnana MichelaORCID,Oeggl Klaus,Poto Luisa,Gabrieli Jacopo,Festi Daniela,Kofler Werner,Cesco Frare Piergiorgio,Zaccone Claudio,Barbante Carlo

Abstract

Abstract The present study aims to reconstruct vegetation development, climate changes and human impact using an ombrotrophic peat core from the Coltrondo bog in the eastern Italian Alps. Evidence from pollen, micro-charcoal, major and trace elements, and lead isotopes from this 7,900 years old peat deposit has been combined, and several climatic oscillations and phases of human impact detected. In particular, human presence was recorded in this area of the Alps from about 650 cal bc, with periods of increased activity at the end of the Middle Ages and also at the end of the 19th century, as evidenced by both human-related pollen and the increase in micro-charcoal particles. The enrichment factor of lead (EFPb) increased since the Roman period and the Middle Ages, suggesting mainly mining activities, whereas the advent of industrialization in the 20th century is marked by the highest EFPb values in the whole core. The EFPb data are strongly supported by the 206Pb/207Pb values and these are in general agreement with the historical information available. Therefore, the multi-proxy approach used here has allowed detection of climatic events and human impact patterns in the Comelico area starting from the Iron Age, giving new insights into the palaeoecology as well as the course of the interaction among humans, climate and ecosystems in this part of the eastern Italian Alps.

Funder

European Research Council under the European Union’s Seventh Framework Programme

Consiglio Nazionale delle Ricerche(IT)-Next Data Project

Publisher

Springer Science and Business Media LLC

Subject

Paleontology,Plant Science,Archeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3