Quantitative landscape reconstruction and erosion history during the past 1,100 years in the Skogaryd Research Catchment, southern Sweden

Author:

Yang BingjieORCID,Nielsen Anne Birgitte,Ljung Karl,Fahlgren Elise,Hormes Anne,Hammarlund Dan

Abstract

AbstractA sediment sequence from a small forest lake in southwestern Sweden was investigated to explore the effects of forestry and land-use on catchment erosion and delivery of organic and minerogenic matter to the lake. Catchment-scale vegetation changes during the last 1,100 years were reconstructed quantitatively at 50-year resolution using pollen analysis and the Landscape reconstruction algorithm (LRA). Variations in terrestrial organic matter input to lake sediments were assessed by total organic carbon (TOC) content and carbon to nitrogen (C/N) ratios. Changes in minerogenic matter were analysed using X-ray fluorescence (XRF) scanning. The results show that Skogaryd was not intensively used for agriculture throughout the past 1,100 years, but its land-use changes were very sensitive to societal changes. Between ca. ad 950 and 1350, local land-use was characterized by small-scale agricultural activities associated with the Medieval expansion, and enhanced soil erosion was recorded by increased K, Ti and Rb deposition. Around ad 1350 much of the farmland was abandoned, most likely in response to outbreaks of plague. The abandonment of farmland caused increased coniferous woodland cover and lower soil erosion. From the 16th century land-use expanded and gradually intensified, concurrent with a population increase documented in the study area between ca. ad 1600 and 1850. Intensive exploitation of the forest led to soil erosion and increased terrestrial organic and minerogenic matter export to the lake. These processes peaked with the artificial drainage of a nearby wetland for agricultural purposes. During the 20th century, modern forestry management started with the plantation of conifers, and soil erosion declined.

Funder

BECC

The Royal Physiographic Society of Lund

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Paleontology,Plant Science,Archeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3