A model of transmissivity and hydraulic conductivity from electrical resistivity distribution derived from airborne electromagnetic surveys of the Mississippi River Valley Alluvial Aquifer, Midwest USA

Author:

Ikard Scott J.ORCID,Minsley Burke J.ORCID,Rigby James R.ORCID,Kress Wade H.ORCID

Abstract

AbstractGroundwater-flow models require the spatial distribution of the hydraulic conductivity parameter. One approach to defining this spatial distribution in groundwater-flow model grids is to map the electrical resistivity distribution by airborne electromagnetic (AEM) survey and establish a petrophysical relation between mean resistivity calculated as a nonlinear function of the resistivity layering and thicknesses of the layers and aquifer transmissivity compiled from historical aquifer tests completed within the AEM survey area. The petrophysical relation is used to transform AEM resistivity to transmissivity and to hydraulic conductivity over areas where the saturated thickness of the aquifer is known. The US Geological Survey applied this approach to a gain better understanding of the aquifer properties of the Mississippi River Valley alluvial aquifer. Alluvial-aquifer transmissivity data, compiled from 160 historical aquifer tests in the Mississippi Alluvial Plain (MAP), were correlated to mean resistivity calculated from 16,816 line-kilometers (km) of inverted resistivity soundings produced from a frequency-domain AEM survey of 95,000 km2 of the MAP. Correlated data were used to define petrophysical relations between transmissivity and mean resistivity by omitting from the correlations the aquifer-test and AEM sounding data that were separated by distances greater than 1 km and manually calibrating the relation coefficients to slug-test data. The petrophysical relation yielding the minimum residual error between simulated and slug-test data was applied to 2,364 line-km of AEM soundings in the 1,000-km2 Shellmound (Mississippi) study area to calculate hydraulic property distributions of the alluvial aquifer for use in future groundwater-flow models.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3