Present and paleo-hydrogeological reconstruction of a complex deep groundwater system in a tectonically active region (Golan Heights, Middle East)

Author:

Ben-nun Levanon Hadas,Burg Avihu,Gavrieli Ittai,Rosenberg Yoav O.,Gersman Ronen,Bartov Yuval,Livshitz Yakov,Starinsky Avraham,Reznik Itay J.ORCID

Abstract

Abstract The geochemical and isotopic composition of deep groundwater in sedimentary aquitards reveals a complex paleo-hydrological system affected by intensive tectonic activity. Water samples collected from deep research boreholes in the Golan Heights (Middle East) exhibit a unique combination of high salinity (>2,000 mg/L Cl) with low Na/Cl (<0.7) and Mg/Ca (<0.3) equivalent ratios, calcium chloride water type [Ca > (HCO3 + SO4)], relatively low δ18OVSMOW and δ2HVSMOW values (–7 and –42‰, respectively), and enriched 87Sr/86Sr ratios compared to the host rocks. The salinity source is related to ancient lagoonary hypersaline brines (10–5 Ma) that existed along the Dead Sea Rift (DSR). These brines intruded into the rocks surrounding the DSR and, based on the current study, also extended away from the rift. Following their subsurface intrusion, the brines have been gradually diluted by 18O- and 2H-depleted freshwater recharged at high elevations, nowadays leaving only traces of the brines that originally intruded. It is also shown that variable hydraulic conductivities in different formations control the dilution rates and subsequently the preservation of the entrapped brines. A paleo-hydrological reconstruction is provided to demonstrate intrusion and backflow dynamics and also the relationship to freshwater dilution, which was triggered by a tectonically active basin of the nearby continental DSR. Brines that initially migrated from the rift have since been gradually flushed back to the rift through the current natural outlets. As the system discharges, it mixes and converges with a separate hydrogeological system, while still preserving some of the geochemical signals of the ancient brines.

Funder

Geological Survey of Israel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3