Abstract
AbstractUncertainties in hydrologic model outputs can arise for many reasons such as structural, parametric and input uncertainty. Identification of the sources of uncertainties and the quantification of their impacts on model results are important to appropriately reproduce hydrodynamic processes in karst aquifers and to support decision-making. The present study investigates the time-dependent relevance of model input uncertainties, defined as the conceptual uncertainties affecting the representation and parameterization of processes relevant for groundwater recharge, i.e. interception, evapotranspiration and snow dynamic, on the lumped karst model LuKARS. A total of nine different models are applied, three to compute interception (DVWK, Gash and Liu), three to compute evapotranspiration (Thornthwaite, Hamon and Oudin) and three to compute snow processes (Martinec, Girons Lopez and Magnusson). All the input model combinations are tested for the case study of the Kerschbaum spring in Austria. The model parameters are kept constant for all combinations. While parametric uncertainties computed for the same model in previous studies do not show pronounced temporal variations, the results of the present work show that input uncertainties are seasonally varying. Moreover, the input uncertainties of evapotranspiration and snowmelt are higher than the interception uncertainties. The results show that the importance of a specific process for groundwater recharge can be estimated from the respective input uncertainties. These findings have practical implications as they can guide researchers to obtain relevant field data to improve the representation of different processes in lumped parameter models and to support model calibration.
Funder
Technische Universität München
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Water Science and Technology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献