Characterising thermal water circulation in fractured bedrock using a multidisciplinary approach: a case study of St. Gorman’s Well, Ireland

Author:

Blake Sarah,Henry Tiernan,Moore John Paul,Murray John,Campanyà Joan,Muller Mark R.,Jones Alan G.,Rath Volker,Walsh John

Abstract

AbstractA hydrogeological conceptual model of the source, circulation pathways and temporal variation of a low-enthalpy thermal spring in a fractured limestone setting is derived from a multidisciplinary approach. St. Gorman’s Well is a thermal spring in east-central Ireland with a complex and variable temperature profile (maximum of 21.8 °C). Geophysical data from a three-dimensional(3D)audio-magnetotelluric(AMT) survey are combined with time-lapse hydrogeological data and information from a previously published hydrochemical analysis to investigate the operation of this intriguing hydrothermal system. Hydrochemical analysis and time-lapse measurements suggest that the thermal waters flow within the fractured limestones of the Carboniferous Dublin Basin at all times but display variability in discharge and temperature. The 3D electrical resistivity model of the subsurface revealed two prominent structures: (1) a NW-aligned faulted contact between two limestone lithologies; and (2) a dissolutionally enhanced, N-aligned, fault of probable Cenozoic age. The intersection of these two structures, which has allowed for karstification of the limestone bedrock, has created conduits facilitating the operation of relatively deep hydrothermal circulation (likely estimated depths between 240 and 1,000 m) within the limestone succession of the Dublin Basin. The results of this study support a hypothesis that the maximum temperature and simultaneous increased discharge observed at St. Gorman’s Well each winter is the result of rapid infiltration, heating and recirculation of meteoric waters within a structurally controlled hydrothermal circulation system.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3