Abstract
AbstractThe creation of artificial dunes for coastal protection may have important consequences for freshwater lenses in coastal aquifers. The objective of this study was to compare the recharge processes below such a young dune with scant vegetation to an older dune covered by grass and herbaceous vegetation. To this aim, soil and water samples were collected from the unsaturated zone at two sites on Langeoog Island in northern Germany, and the soil water was analysed for stable water isotopes and chloride. Recharge rates were calculated by using a new version of HYDRUS-1D, which was modified to simulate isotope fractionation during evaporation. Both the model outcomes and the data highlight the importance of fractionation, which is slightly more pronounced at the older, more vegetated dune. At the newly constructed dune, vegetation dieback seemingly reduces the importance of transpiration during summer. Recharge occurs year-round, albeit predominantly during the winter months. Calculated recharge rates are consistent with lysimeter measurements, but are significantly higher than previously reported rates based on groundwater age data, which is primarily attributed to the absence of dune shrub at the sites investigated here. More data are needed to establish the importance of soil-water repellency and overland flow. Based on the results, it is proposed that repeated isotope sampling can yield important insights into the dynamics of recharge processes, including their response to climate change.
Funder
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Water Science and Technology
Reference44 articles.
1. Barbecot F, Guillon S, Pili E, Larocque M, Gibert-Brunet E, Hélie J-F, Noret A, Plain C, Schneider V, Mattei A, Meyzonnat G (2018) Using water stable isotopes in the unsaturated zone to quantify recharge in two contrasted infiltration regimes. Vadose Zone J 17. https://doi.org/10.2136/vzj2017.09.0170
2. Barckhausen J (1969) Entstehung und Entwicklung der Insel Langeoog: Beispiele zur Quartärgeologie und Paläogeographie eines ostfriesischen Küstenabschnittes [Formation and development of the island of Langeoog: examples of Quaternary geology and paleogeography of an east Frisian coast section]. Oldenburger Jahrbuch 68:239–281
3. Bauters TWJ, Steenhuis TS, DiCarlo DA, Nieber JL, Dekker LW, Ritsema CJ, Parlange J-Y, Haverkamp R (2000) Physics of water repellent soils. J Hydrol. https://doi.org/10.1016/S0022-1694(00)00197-9
4. Bisdom EBA, Dekker LW, Schoute JFT (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 56. https://doi.org/10.1016/0016-7061(93)90103-R
5. Boumaiza L, Chesnaux R, Drias T, Walter J, Stumpp C (2021) Using vadose-zone water stable isotope profiles for assessing groundwater recharge under different climatic conditions. Hydrol Sci J. https://doi.org/10.1080/02626667.2021.1957479
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献