Shallow-subsidence vulnerability in the city of New Orleans, southern USA

Author:

van Asselen SannekeORCID,Erkens GillesORCID,Keogh Molly E.,Stuurman RoelofORCID

Abstract

AbstractLand subsidence in the city of New Orleans (USA) and its surroundings increases flood risk, and may cause damage to buildings and infrastructure and loss of protective coastal wetlands. To make New Orleans more resilient to future flooding, a new approach for groundwater and subsidence management is needed. As a first step in developing such an approach, high-quality and high-resolution subsurface and groundwater information was collected and synthesized to better understand and quantify shallow land subsidence in New Orleans. Based on the collected field data, it was found that especially the low-lying areas north and south of the Metairie-Gentilly (MG) Ridge are most vulnerable to further subsidence; north of the MG Ridge, subsidence is mainly caused by peat oxidation and south of the MG Ridge mainly by peat compaction. At present, peat has compacted ~31% on average, with a range of 9–62%, leaving significant potential for further subsidence due to peat compaction. Phreatic groundwater levels drop to ~150 cm below surface levels during dry periods and increase to ~50 cm below surface during wet periods, on average. Present phreatic groundwater levels are mostly controlled by leaking subsurface pipes. Shallow groundwater in the northern part of New Orleans is threatened by salinization resulting from a reversal of groundwater flow following past subsidence, which may increase in the future due to sea-level rise and continued subsidence. The hydrogeologic information provided here is needed to effectively design tailor-made measures to limit urban flooding and continued subsidence in the city of New Orleans.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3