Evaluación del potencial de acuíferos de baja transmisividad para sistemas de almacenamiento de energía térmica en acuíferos: un estudio de caso en Flandes (Bélgica)

Author:

Tas LukaORCID,Simpson David,Hermans Thomas

Abstract

AbstractThe Member States of the European Union pledged to reduce greenhouse gas emissions by 80–95% by 2050. Shallow geothermal systems might substantially contribute by providing heating and cooling in a sustainable way through seasonally storing heat and cold in the shallow ground (<200 m). When the minimum yield associated with the installation of a cost-effective aquifer thermal energy storage (ATES) system cannot be met, borehole thermal energy storage, relying mostly on the thermal conductivity of the ground, is proposed. However, for large-scale applications, this requires the installation of hundreds of boreholes, which entails a large cost and high disturbance of the underground. In such cases, ATES systems can nevertheless become interesting. This paper presents a case study performed on a Ghent University campus (Belgium), where the feasibility of ATES in an area with a low transmissivity was determined. The maximum yield of the aquifer was estimated at 5 m3/h through pumping tests. Although this low yield was attributed to the fine grain size of the aquifer, membrane filtering index tests and long-term injection tests revealed that the clogging risk was limited. A groundwater model was used to optimize the well placement. It was shown that a well arrangement in a checkerboard pattern was most effective to optimize the hydraulic efficiency while maintaining the thermal recovery efficiency of the ATES system. Hence, for large-scale projects, efficient thermal energy storage can also be achieved using a (more cost-effective) ATES system even in low-permeability sediments.

Funder

Ghent University Special Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3