Estimating hydraulic conductivity correlation lengths of an aquitard by inverse geostatistical modelling of a pumping test

Author:

van Leer Martijn D.,Zaadnoordijk Willem Jan,Zech Alraune,Griffioen Jasper,Bierkens Marc F. P.

Abstract

AbstractAquitards are common hydrogeological features in the subsurface. Typically, pumping tests are used to parameterize the hydraulic conductivity of heterogeneous aquitards. However, they do not take spatial variability and uncertainty into account. Alternatively, core-scale measurements of hydraulic conductivity are used in geostatistical upscaling methods, for which their correlation lengths are needed, but this information is extremely difficult to obtain. This study investigates whether a pumping test can be used to obtain the correlation lengths needed for geostatistical upscaling and account for the uncertainty about heterogeneous aquitard conductivity. Random realizations are generated from core-scale data with varying correlation lengths and inserted into a groundwater flow model which simulates the outcome of an actual pumping test. The realizations yielded a better fit to the pumping test data than the traditional pumping test result, assuming homogeneous layers are selected. Ranges of horizontal and vertical correlation lengths that fit the pumping-test well are found. However, considerable uncertainty regarding the correlation lengths remains, which should be considered when parameterizing a regional groundwater flow model.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3