Prévention du colmatage des puits lors du stockage dans l’aquifère d’eaux de drainage turbides riches en carbone organique dissous et en nutriments

Author:

Kruisdijk EmielORCID,Ros Julian F.,Ghosh Devanita,Brehme Maren,Stuyfzand Pieter J.,van Breukelen Boris M.

Abstract

AbstractWell clogging was studied at an aquifer storage transfer and recovery (ASTR) site used to secure freshwater supply for a flower bulb farm. Tile drainage water (TDW) was collected from a 10-ha parcel, stored in a sandy brackish coastal aquifer via well injection in wet periods, and reused during dry periods. This ASTR application has been susceptible to clogging, as the TDW composition largely exceeded most clogging mitigation guidelines. TDW pretreatment by sand filtration did not cause substantial clogging at a smaller ASR site (2 ha) at the same farm. In the current (10 ha) system, sand filtration was substituted by 40-μm disc filters to lower costs (by 10,000–30,000 Euro) and reduce space (by 50–100 m2). This measure treated TDW insufficiently and injection wells rapidly clogged. Chemical, biological, and physical clogging occurred, as observed from elemental, organic carbon, 16S rRNA, and grain-size distribution analyses of the clogging material. Physical clogging by particles was the main cause, based on the strong relation between injected turbidity load and normalized well injectivity. Periodical backflushing of injection wells improved operation, although the disc filters clogged when the turbidity increased (up to 165 NTU) during a severe rainfall event (44 mm in 3 days). Automated periodical backflushing, together with regulating the maximum turbidity (<20 NTU) of the TDW, protected ASTR operation, but reduced the injected TDW volume by ~20–25%. The studied clogging-prevention measures collectively are only viable as an alternative for sand filtration when the injected volume remains sufficient to secure the farmer’s needs for irrigation.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3