Curvas de flujo con múltiples picos en ríos kársticos: efectos de un sistema de difluencia-confluencia

Author:

Deleu RomainORCID,Poulain Amaël,Rochez Gaëtan,Soares-Frazao Sandra,Van Rentergem Guy,De Poorter Eli,Hallet Vincent

Abstract

AbstractIn karstic environments, it is not unusual for an underground river to split into two or more streams (diffluence) and merge back together downstream (confluence). This kind of behavior can generate multipeaked breakthrough curves (BTCs) in dye tracing at a sampling site located downstream of the confluence(s). It is also possible that such a phenomenon is difficult to highlight with dye tracing if the tracer clouds coming from the different streams reach the sampling locations at the same time. In this study, an attempt at quantifying the importance of different criteria in the occurrence of a multipeaked BTC is done by performing a dye tracing campaign in a two-tributaries diffluence-confluence (DC) system and using a one-dimensional solute transport model. The results from both field data and the solute transport model suggest that a double-peaked BTC occurs downstream of a DC system if the following conditions are met: (1) the injection is done close enough to the diffluence, (2) the sampling point is located not too far from the confluence, and (3) the two (or more) streams have sufficiently contrasted travel times from the diffluence to the confluence. The paper illustrates that, even if a diffluence occurs in a karstic river, multipeaked BTCs are not necessarily observed downstream of the confluence if these three conditions are not met. Therefore, characterizing a DC system using dye tracing is a real challenge. This could explain why publications that report studies involving multipeaked BTCs are quite rare.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3