An evaluation of semidistributed-pipe-network and distributed-finite-difference models to simulate karst systems

Author:

Gill L. W.,Schuler P.,Duran L.,Morrissey P.,Johnston P. M.

Abstract

AbstractSeveral different approaches have been developed to model the specific characteristics of karst aquifers, taking account of their inherent complex spatial and temporal heterogeneities. This paper sets out the development of a semidistributed modelling approach for applications in an Irish karst context using urban drainage software. The models have proven to be very useful for different studies, with examples given for the ecohydrology of ephemeral karst lakes, extreme groundwater-flood alleviation, karst network investigation, submarine groundwater discharge, and quantification of different recharge and flow components. The limitations of the approach are also highlighted, in particular not being able to simulate diffuse infiltration and flow paths explicitly across the groundwater catchment. Hence, a more distributed, finite-difference modelling approach using MODFLOW Unstructured Grid (USG) with the newly developed Connected Linear Network (CLN) process is then compared against the semidistributed approach on the same karst catchment. Whilst it has proven difficult to achieve the same levels of model performance in simulating the spring flows in the distributed model compared to the semidistributed model, the ability to interrogate the flow paths at any point on the three-dimensional aquifer is demonstrated, which can give new insights into flows (and potential contaminant transport) through such complex systems. The influence of the proximity of highly transmissive conduits on the flow dynamics through the much-lower transmissive matrix cells in which the network is embedded has been particularly investigated.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3