Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Water Science and Technology
Reference36 articles.
1. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. arXiv preprint. arXiv:1701.07875
2. Azulay A, Weiss Y (2018) Why do deep convolutional networks generalize so poorly to small image transformations? arXiv preprint.https://arxiv.org/abs/1805.12177
3. Bao J, Li L, Davis A (2022) Variational autoencoder or generative adversarial networks? a comparison of two deep learning methods for flow and transport data assimilation. Math Geosci 54:1017–1042
4. Bao J, Li L, Redoloza F (2020) Coupling ensemble smoother and deep learning with generative adversarial networks to deal with non-gaussianity in flow and transport data assimilation. J Hydrol 590:125443
5. Chan S, Elsheikh AH (2018) Parametric generation of conditional geological realizations using generative neural networks. arXiv preprint. http://arxiv.org/abs/1807.05207