Groundwater-level recovery following closure of open-pit mines

Author:

Bozan Caglar,Wallis IlkaORCID,Cook Peter G.,Dogramaci Shawan

Abstract

AbstractOpen-pit mining has increased substantially over the past two decades. Many currently operating open-pit mines are facing the end of mine-life over the next few decades and, increasingly, focus is shifting towards mine-closure planning that provides evidence on available closure options under the given geological, hydro(geo)logical and climatic conditions. This study uses synthetic groundwater modelling to build basic process understanding of closure options and how these will determine the formation of pit lakes. This governs the long-term pit lake water quality and how postmining landscapes may be utilised. Simulations show that the recovery time of postmining groundwater levels increases with decreasing aquifer transmissivity. Final postmining water tables are predominantly controlled by the implemented mine closure options and climatic conditions. The most important decision is, thereby, whether to backfill the pit to above the water table or allow a pit lake to develop. Under moderately transmissive aquifer settings, backfilling of pits leads to rapidly rising groundwater levels within the first decade after mining, with water-table recoveries of above 70%. If mine voids remain unfilled, evaporation from the pit lake surface becomes a governing factor in determining whether the unfilled mine pit becomes a terminal sink for groundwater. Lake levels may remain subdued by several 10s of metres in arid to semiarid climates. If surplus surface water can be diverted into open pits, rapid filling can accelerate groundwater recovery of open pits in regions of low permeability. This is a less successful management option in transmissive aquifers.

Funder

Flinders University

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3