渗透性各向异性不对齐对水文地质模型流量预测的影响

Author:

Poulet ThomasORCID,Sheldon Heather A.ORCID,Kelka UlrichORCID,Behnoudfar PouriaORCID

Abstract

AbstractThe notion of permeability is critical to compute underground fluid flow. In most cases rock permeability is anisotropic, due to physical processes including gravitational compaction, which often results in the principal permeability directions being approximately horizontal and vertical in undeformed rocks. However, rocks often are tilted and/or deformed over time, therefore permeability orientation varies. Anisotropic permeability with varying orientation is hard to quantify in three-dimensional (3D) models and is therefore sometimes approximated, for convenience, by setting the principal permeability directions to horizontal and vertical, and assuming that corresponding errors in fluid flow might be negligible when the change in orientation is minimal. This study shows how minor misalignment of the permeability tensor can lead to large errors in fluid flow magnitude and corresponding transport times for strongly anisotropic rocks. It also provides a method to set anisotropic permeability orientation appropriately in geometrically complex 3D models using implicit 3D geological modelling. The misalignment is particularly costly when fluid flow is localised in thin channels, where a misalignment of just 5° leads to errors of two orders of magnitude for anisotropy ratios (between the largest and smallest principal values of the permeability tensor) of 104. It is therefore recommended to set anisotropic permeability accurately, using longitudinal and transverse components along with their respective orientations, rather than horizontal and vertical components. This approach will become increasingly important as 3D models gain realism in their representation of complex geometries.

Funder

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3