Hydrometallurgical Processes for the Recovery of Metals from Steel Industry By-Products: A Critical Review

Author:

Binnemans KoenORCID,Jones Peter TomORCID,Manjón Fernández Álvaro,Masaguer Torres Victoria

Abstract

Abstract The state of the art for the recovery of metals from steel industry by-products using hydrometallurgical processes is reviewed. The steel by-products are different slags, dusts, and sludges from a blast furnace (BF), basic oxygen furnace (BOF), electric arc furnace (EAF), and sinter plant, as well as oily mill scale and pickling sludge. The review highlights that dusts and sludges are harder to valorize than slags, while the internal recycling of dusts and sludges in steelmaking is inhibited by their high zinc content. Although the objectives of treating BF sludges, BOF sludges, and EAF dust are similar, i.e., the removal of zinc and the generation of an Fe-rich residue to be returned to the steel plant, these three classes of by-products have specific mineralogical compositions and zinc contents. Because wide variations in the mineralogical composition and zinc content occur, it is impossible to develop a one-size-fits-all flow sheet with a fixed set of process conditions. The reason for the interest in EAF dust is its high zinc content, by far the highest of all steel by-products. However, EAF dust is usually studied from the perspective of the zinc industry. There are not only different concentrations of zinc, but also variations in the all-important ZnO/ZnFe2O4 (zincite-to-franklinite) ratio. In many chemical processes, only the ZnO dissolves, while the ZnFe2O4 is too refractory and reports to the residue. It only dissolves in concentrated acids, or if the dust is pre-treated, e.g., with a reductive roasting step. The dissolution of ZnFe2O4 in acidic solutions also brings significant amounts of iron in solution. Finally, due to its high potassium chloride content, sinter-plant dust could be a source of potassium for the fertilizer industry. Graphical Abstract

Funder

H2020 European Institute of Innovation and Technology

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanics of Materials,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3