Iron Oxide Direct Reduction and Iron Nitride Formation Using Ammonia: Review and Thermodynamic Analysis

Author:

Triana TiaraORCID,Brooks Geoffrey A.,Rhamdhani M. Akbar,Pownceby Mark I.

Abstract

AbstractThe steel industry is one of the main contributors to global greenhouse gas emissions, responsible for about 7 to 9% of the world’s total output. The steel sector is under pressure to move toward net-zero emissions by reducing its consumption of coke as the main method of reducing iron-rich feed materials to iron. Due to its well-developed synthesis process, high supply chain, straightforward handling technologies, and highly developed long-standing infrastructure, ammonia has the potential to become a replacement for coke as a future iron ore reductant. This work reviews previous research on ammonia direct reduction of iron oxides and the possible formation of iron nitrides. A thermodynamic assessment using FactSage 8.2 thermochemical software was carried out examining the behavior of ammonia gas as the reductant upon heating, detailed evaluations of the stable phases present under different reaction conditions and using different feed materials, and the formation and stability of iron nitride phases. The results suggest that the reduction of hematite with ammonia occurs in two steps below 570 °C and three steps above 570 °C. The ratio of Fe2O3/NH3 was predicted to affect the reduction reactions by promoting a greater reduction degree and simultaneously lowering the initial temperature needed for reduction, while the excess gas concentration can suppress FeO formation. A predominance area diagram was developed showing the main areas of stable phases as a function of the partial pressure of NH3 and temperature. The formation of iron nitrides during the process was predicted and these were not expected to cause issues for the formation of iron due to their instability under the conditions studied. This analysis can be used to inform further experimental studies regarding ammonia reduction of iron oxide. Graphical Abstract

Funder

Commonwealth Scientific and Industrial Research Organisation

Swinburne University of Technology

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Press Release – December 2022 crude steel production and 2022 global crude steel production totals. (2023) World Steel Association: Brussels, Belgium

2. Global Hydrogen Review. (2022) International Energy Agency.

3. Babich A, and D. Senk (2015) 17 - Recent developments in blast furnace iron-making technology. In: I Ore, Lu L (eds) Woodhead Publishing. pp. 505–547

4. Sustainability Indicators 2022 Report (2022) World Steel Association.

5. Suopajärvi H, Pongrácz E, Fabritius T (2013) The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability. Renew Sustain Energy Rev 25:511–528

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3