Microstructural Investigation of Discarded NdFeB Magnets After Low-Temperature Hydrogenation

Author:

Habibzadeh AlirezaORCID,Kucuker Mehmet Ali,Çakır Öznur,Gökelma Mertol

Abstract

AbstractDue to continuously increasing demand and limited resources of rare-earth elements (REEs), new solutions are being sought to overcome the supply risk of REEs. To mitigate the supply risk of REEs, much attention has recently been paid to recycling. Despite the more common recycling methods, including hydrometallurgical and pyrometallurgical processes, hydrogen processing of magnetic scrap (HPMS) is still in the development stage. Magnet-to-magnet recycling via hydrogenation of discarded NdFeB magnets provides a fine powder suitable for the production of new magnets from secondary sources. One of the crucial aspects of HPMS is the degree of recovery of the magnetic properties, as the yield efficiency can easily reach over 95%. The amount, morphology, and distribution of the Nd-rich phase are the key parameters to achieve the excellent performance of the magnet by isolating the matrix grain. Therefore, a better insight into the microstructure of the matrix grains and the Nd-rich phase before and after hydrogenation is essential. In this study, a low-temperature hydrogenation process in the range of room temperature to 400 °C was conducted as the first step to recycle NdFeB magnets from discarded hard disk drives (HDDs), and the hydrogenated powder was characterized by electron microscopy and X-ray diffraction. The results show that there are three different morphologies of the Nd-rich phase, which undergo two different transformations through oxidation and hydride formation. While at lower temperatures (below 250 °C) the degree of pulverization is higher and the experimental evidence of hydride formation is less clear, at higher temperatures the degree of pulverization decreases. The formation of neodymium hydride at higher temperatures prevents further oxidation of the Nd-rich phase due to its high stability. Graphical Abstract

Funder

Tübitak

Izmir Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3