Abstract
AbstractA significant source of copper losses from pyrometallurgical copper extraction is attributed to dissolved and entrained copper in discarded slag. Entrained copper can be recovered via pyrometallurgical slag cleaning in a settling furnace, where the slag viscosity and copper droplet size distribution (CDSD) are critical parameters. Reduced copper losses suggest improved raw material efficiency, and the slag becomes a more environmentally safe byproduct. In this study, iron silicate slags from a smelting furnace are industrially CaO modified in a fuming furnace to contain a CaO content between 8 and 18 wt.%. The viscosity of slags with and without CaO modifications is evaluated in the temperature range from 1423 to 1723 K. The influences of the CaO modifications on the CDSD, slag matrix copper content, and total copper content were determined. The results show that the slag viscosity decreases with increasing CaO concentrations in the slag. In addition, the copper content decreases in the slag phase, and the CDSD shifts to contain relatively larger droplets. The effect of CaO slag modification reveals a linear relationship between the overall copper recovery and viscosity, which increased from 63 to 88% when the viscosity in the respective batch was 0.51 and 0.25 Pa·s.
Graphical Abstract
Funder
Lulea University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,Mechanics of Materials,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献