Abstract
AbstractSeveral geopolymer-based materials were produced and characterized by mixing metakaolin, a commercial sodium silicate solution, a sodium hydroxide solution, and a loose waste olivine sand deriving from a metallurgical process devoted to the production of a high manganese steel. Olivine sand was added either in the as-received form or after a thermal treatment at 900 °C. Hardened materials containing different amounts of olivine sand were characterized and their behavior was compared to that of a blank geopolymeric matrix. Materials were examined by X-ray diffraction, Fourier Transform Infrared Radiation, and optical and scanning electron microscope investigation; mechanical compressive strength was discussed taking into account water absorption and microstructure. It has been observed that all compositions containing the as-received olivine sands badly perform, whereas those prepared using thermally treated olivine have higher compressive strength than the reference blank composition. In particular, samples with composition containing 100 g of metakaolin and 75 g of olivine displayed the best overall behavior.
Graphical Abstract
Funder
Università degli Studi di Udine
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,Mechanics of Materials,Environmental Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献