Funder
Directorate for Mathematical and Physical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis
Reference60 articles.
1. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proceedings of Symposium, University of Maryland, Baltimore, Md., 1972), Academic Press, New York, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg (1972)
2. Barker, B., Mireles James, J., Morgan, J.: Parameterization method for unstable manifolds of standing waves on the line, SIAM. J. Appl. Dyn. Syst. 19, 1758–1797 (2020). https://doi.org/10.1137/19M128243X
3. Blair, J.J.: Higher order approximations to the boundary conditions for the finite element method. Math. Comput. 30, 250–262 (1976) http://links.jstor.org/sici?sici=0025-5718(197604)30:134<250:HOATTB>2.0.CO;2-X &origin=MSN
4. Breden, M., Lessard, J.-P., Mireles James, J.D.: Computation of maximal local (un)stable manifold patches by the parameterization method. Indag. Math. (N.S.) 27, 340–367 (2016). https://doi.org/10.1016/j.indag.2015.11.001
5. Breuer, B., McKenna, P.J., Plum, M.: Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differ. Equ. 195, 243–269 (2003)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献