Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Berestycki, H., Gallouët, T., Kavian, O.: Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297(5), 307–310 (1983)
2. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. Arch. Ration. Mech. Anal. 82(4), 313–375 (1983)
3. Berestycki, H., Lions, P.-L., Peletier, L.A.: An ODE approach to the existence of positive solutions for semilinear problems in $${ R}^{N}$$. Indiana Univ. Math. J. 30(1), 141–157 (1981)
4. Bhattacharya, D., Farah, L.G., Roudenko, S.: Global well-posedness for low regularity data in the 2d modified Zakharov–Kuznetsov equation. J. Differ. Equ. 268(12), 7962–7997 (2020)
5. Biagioni, H.A., Linares. F.: Well-posedness results for the modified Zakharov–Kuznetsov equation. In: Lupo, D., Pagani, C.D., Ruf, B. (eds.) Nonlinear Equations: Methods, Models and Applications. Progress in Nonlinear Differential Equations and Their Applications, vol. 54, pp. 181–189. Birkh$$\acute{a}$$user, Basel (2003)