Abstract
AbstractGiven an open, bounded and connected set $$\Omega \subset \mathbb {R}^{3}$$
Ω
⊂
R
3
and its rescaling $$\Omega _{\varepsilon }$$
Ω
ε
of size $$\varepsilon \ll 1$$
ε
≪
1
, we consider the solutions of the Cauchy problem for the inhomogeneous wave equation $$\begin{aligned} (\varepsilon ^{-2}\chi _{\Omega _{\varepsilon }}+\chi _{\mathbb {R}^{3}\backslash \Omega _{\varepsilon }})\partial _{tt}u=\Delta u+f \end{aligned}$$
(
ε
-
2
χ
Ω
ε
+
χ
R
3
\
Ω
ε
)
∂
tt
u
=
Δ
u
+
f
with initial data and source supported outside $$\Omega _{\varepsilon }$$
Ω
ε
; here, $$\chi _{S}$$
χ
S
denotes the characteristic function of a set S. We provide the first-order $$\varepsilon $$
ε
-corrections with respect to the solutions of the inhomogeneous free wave equation and give space-time estimates on the remainders in the $$L^{\infty }((0,1/\varepsilon ^{\tau }),L^{2}(\mathbb {R}^{3})) $$
L
∞
(
(
0
,
1
/
ε
τ
)
,
L
2
(
R
3
)
)
-norm. Such corrections are explicitly expressed in terms of the eigenvalues and eigenfunctions of the Newton potential operator in $$L^{2}(\Omega )$$
L
2
(
Ω
)
and provide an effective dynamics describing a legitimate point scatterer approximation in the time domain.
Funder
Università degli Studi dell’Insubria
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Albeverio, S., Hoegh-Krohn, R.: The resonance expansion for the Green’s function of the Schrödinger and wave equations. In: Resonances-Models and Phenomena. Lecture Notes in Physics vol. 211, Springer (1984)
2. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics, 2nd edn. AMS Chelsea Publishing, Providence (2005)
3. Ammari, H., Zhang, H.: A mathematical theory of super-resolution by using a system of sub-wavelength Helmholtz resonators. Comm. Math. Phys. 337, 379–428 (2015)
4. Ammari, H., Garapon, P., Guadarrama Bustos, L., Kang, H.: Transient anomaly imaging by the acoustic radiation force. J. Differ. Equ. 249, 1579–1595 (2010)
5. Ammari, H., Dabrowski, A., Fitzpatrick, B., Millien, P., Sini, M.: Subwavelength resonant dielectric nanoparticles with high refractive indices. Math. Methods Appl. Sci. 42, 6567–6579 (2019)