Fast hybrid numerical-asymptotic boundary element methods for high frequency screen and aperture problems based on least-squares collocation

Author:

Gibbs A.ORCID,Hewett D. P.,Huybrechs D.,Parolin E.

Abstract

AbstractWe present a hybrid numerical-asymptotic (HNA) boundary element method (BEM) for high frequency scattering by two-dimensional screens and apertures, whose computational cost to achieve any prescribed accuracy remains bounded with increasing frequency. Our method is a collocation implementation of the high order hp HNA approximation space of Hewett et al. (IMA J Numer Anal 35:1698–1728, 2015), where a Galerkin implementation was studied. An advantage of the current collocation scheme is that the one-dimensional highly oscillatory singular integrals appearing in the BEM matrix entries are significantly easier to evaluate than the two-dimensional integrals appearing in the Galerkin case, which leads to much faster computation times. Here we compute the required integrals at frequency-independent cost using the numerical method of steepest descent, which involves complex contour deformation. The change from Galerkin to collocation is nontrivial because naive collocation implementations based on square linear systems suffer from severe numerical instabilities associated with the numerical redundancy of the HNA basis, which produces highly ill-conditioned BEM matrices. In this paper we show how these instabilities can be removed by oversampling, and solving the resulting overdetermined collocation system in a weighted least-squares sense using a truncated singular value decomposition. On the basis of our numerical experiments, the amount of oversampling required to stabilise the method is modest (around 25% typically suffices), and independent of frequency. As an application of our method we present numerical results for high frequency scattering by prefractal approximations to the middle-third Cantor set.

Funder

KU Leuven

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3