Abstract
AbstractWe analyze compact rotationally symmetric surfaces of $${\mathbb {R}}^3$$
R
3
with circular boundary and almost constant mean curvature, showing that they must nearly spherical caps.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis
Reference7 articles.
1. Aleksandrov, A.D.: Uniqueness theorems for surfaces in the large. I. Vestnik Leningrad. Univ. 11(19), 5–17 (1956)
2. Alexandrov, A.D.: A characteristic property of spheres. Ann. Mat. Pura Appl. 58(4), 303–315 (1962)
3. Delaunay, Ch: Sur la surface de révolution dont la courbure moyenne est constante., Journal de Mathématiques Pures et Appliquées , 309–314 (1841)
4. Hopf, H.: Differential geometry in the large. Lecture Notes in Mathematics, vol. 1000. Springer-Verlag, Berlin (1983)
5. Kenmotsu, K.: Surfaces with constant mean curvature, American Mathematical Society (2003)