Abstract
AbstractIn this article we consider the anisotropic curve shortening flow for a planar network of three curves which meet at a triple junction. We show that the anisotropic energy fulfills a Łojasiewicz–Simon gradient inequality from which we derive a stability result for the evolution. Precisely, we show that, for initial data which are close to the energy minimizer, the flow exists globally and converges to the minimizer.
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Angenent, S., Gurtin, M.E.: Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface [MR1013461 (91d:73004)]. In: Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, pp. 196–264. Springer, Berlin (1999)
2. Barrett, J., Garcke, H., Nürnberg, R.: On the variational approximation of combined second and fourth order geometric evolution equations. SIAM J. Sci. Comput. 29(3), 1006–1041 (2007)
3. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25(3), 537–566 (1996)
4. Bergh, J., Löfström, J.: Interpolation spaces: an introduction. In: Grundlehren der mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)
5. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext, pp. xiv+599. Springer, New York (2011)