Rectifiability of divergence-free fields along invariant 2-tori

Author:

Perrella DavidORCID,Pfefferlé David,Stoyanov Luchezar

Abstract

AbstractWe find conditions under which the restriction of a divergence-free vector field B to an invariant toroidal surface S is rectifiable; namely constant in a suitable global coordinate system. The main results are similar in conclusion to Arnold’s Structure Theorems but require weaker assumptions than the commutation $$[B,\nabla \times B] = 0$$ [ B , × B ] = 0 . Relaxing the need for a first integral of B (also known as a flux function), we assume the existence of a solution $$u: S \rightarrow {\mathbb {R}}$$ u : S R to the cohomological equation $$B\vert _S(u) = \partial _n B$$ B | S ( u ) = n B on a toroidal surface S mutually invariant to B and $$\nabla \times B$$ × B . The right hand side $$\partial _n B$$ n B is a normal surface derivative available to vector fields tangent to S. In this situation, we show that the field B on S is either identically zero or nowhere zero with $$B\vert _S/\Vert B\Vert ^2 \vert _S$$ B | S / B 2 | S being rectifiable. We are calling the latter the semi-rectifiability of B (with proportionality $$\Vert B\Vert ^2 \vert _S$$ B 2 | S ). The nowhere zero property relies on Bers’ results in pseudo-analytic function theory about a generalised Laplace-Beltrami equation arising from Witten cohomology deformation. With the use of de Rham cohomology, we also point out a Diophantine integral condition where one can conclude that $$B\vert _S$$ B | S itself is rectifiable. The rectifiability and semi-rectifiability of $$B\vert _S$$ B | S is fundamental to the so-called magnetic coordinates, which are central to the theory of magnetically confined plasmas.

Funder

University of Western Australia

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3