Combined modelling of micro-level outstanding claim counts and individual claim frequencies in non-life insurance

Author:

Bücher AxelORCID,Rosenstock Alexander

Abstract

AbstractUsually, the actuarial problems of predicting the number of claims incurred but not reported (IBNR) and of modelling claim frequencies are treated successively by insurance companies. New micro-level methods designed for large datasets are proposed that address the two problems simultaneously. The methods are based on an elaborated occurrence process model that includes both a claim intensity model and a claim development model. The influence of claim feature variables is modelled by suitable neural networks. Extensive simulation experiments and a case study on a large real data set from a motor legal insurance portfolio show accurate predictions at both the aggregate and individual policy level, as well as appropriate fitted models for claim frequencies. Moreover, a novel alternative approach combining data from classic triangle-based methods with a micro-level intensity model is introduced and compared to the full micro-level approach.

Funder

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Reference24 articles.

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Software available from tensorflow.org

2. Allaire J, Eddelbuettel D, Golding N, Tang Y (2016) tensorflow: R interface to tensorflow. https://github.com/rstudio/tensorflow

3. Antonio K, Plat R (2014) Micro-level stochastic loss reserving for general insurance. Scand Actuar J 2014(7):649–669

4. Antonio K, Godecharle E, Van Oirbeek R (2016) A multi-state approach and flexible payment distributions for micro-level reserving in general insurance. SSRN 20:20

5. Badescu AL, Lin XS, Tang D (2016) A marked Cox model for the number of IBNR claims: theory. Insur Math Econ 69:29–37

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3