A resimulation framework for event loss tables based on clustering

Author:

Funke BenediktORCID,Roering Harmen

Abstract

AbstractCatastrophe loss modeling has enormous relevance for various insurance companies due to the huge loss potential. In practice, geophysical-meteorological models are widely used to model these risks. These models are based on the simulation of meteorological and physical parameters that cause natural events and evaluate the corresponding effects on the insured exposure of a certain company. Due to their complexity, these models are often operated by external providers—at least seen from the perspective of a variety of insurance companies. The outputs of these models can be made available, for example, in the form of event loss tables, which contain different statistical characteristics of the simulated events and their caused losses relative to the exposure. The integration of these outputs into the internal risk model framework is fundamental for a consistent treatment of risks within the companies. The main subject of this work is the formulation of a performant resimulation algorithm of given event loss tables, which can be used for this integration task. The newly stated algorithm is based on cluster analysis techniques and represents a time-efficient way to perform sensitivities and scenario analyses.

Funder

Technische Hochschule Köln

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability

Reference8 articles.

1. Chen X (2015) A new clustering algorithm based on near neighbor influence. Expert Syst Appl 42(21):7746–7758

2. Deutsche Gesellschaft für Versicherungs- und Finanzmathematik: Interne Risikomodelle in der Schaden-/Unfallversicherung (2008)

3. Diers D (2007) Interne Unternehmensmodelle in der Schaden- und Unfallversicherung : Entwicklung Eines Stochastischen Internen Modells Für die Wert- und Risikoorientierte Unternehmenssteuerung und Für die Anwendung Im Rahmen Von Solvency II. ifa-Verlag, Ulm

4. Diers D (2009) Stochastic modelling of catastrophe risks in internal models. German Risk Insur Rev (GRIR) 5(1):1–28

5. Ester M, Kriegel H-P, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96:226–231

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3