Abstract
AbstractWe present a claims reserving technique that uses claim-specific feature and past payment information in order to estimate claims reserves for individual reported claims. We design one single neural network allowing us to estimate expected future cash flows for every individual reported claim. We introduce a consistent way of using dropout layers in order to fit the neural network to the incomplete time series of past individual claims payments. A proof of concept is provided by applying this model to synthetic as well as real insurance data sets for which the true outstanding payments for reported claims are known.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献