Abstract
AbstractTo explore how molecules became signs I will ask: “What sort of process is necessary and sufficient to treat a molecule as a sign?” This requires focusing on the interpreting system and its interpretive competence. To avoid assuming any properties that need to be explained I develop what I consider to be a simplest possible molecular model system which only assumes known physics and chemistry but nevertheless exemplifies the interpretive properties of interest. Three progressively more complex variants of this model of interpretive competence are developed that roughly parallel an icon-index-symbol hierarchic scaffolding logic. The implication of this analysis is a reversal of the current dogma of molecular and evolutionary biology which treats molecules like DNA and RNA as the original sources of biological information. Instead I argue that the structural characteristics of these molecules have provided semiotic affordances that the interpretive dynamics of viruses and cells have taken advantage of. These molecules are not the source of biological information but are instead semiotic artifacts onto which dynamical functional constraints have been progressively offloaded during the course of evolution.
Publisher
Springer Science and Business Media LLC
Subject
Social Sciences (miscellaneous),Language and Linguistics,Communication
Reference27 articles.
1. Barbieri, M. (2015). Code Biology: A New Science of Life. NJ: Springer.
2. Bickhard, M. H. (1993). Representational content in humans and machines. Journal of Experimental and Theoretical Artificial Intelligence, 5, 285–333.
3. Crick, F. H. (1958). On Protein Synthesis. In F. K. Sanders (Ed.), Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules (pp. 138–163). Cambridge University Press.
4. Das, T., Ghule, S., & Vanka, K. (2019). Insights into the origin of life: Did it begin from HCN and H2O? ACS Central Science, 5(9), 1532–1540.
5. Dawkins, R. (1976). The Selfish Gene. Oxford University Press.
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献