Abstract
AbstractOhno and Zagier (Indag Math 12:483–487, 2001) found that a generating function of sums of multiple polylogarithms can be written in terms of the Gauss hypergeometric function $${}_2F_1$$
2
F
1
. As a generalization of the Ohno and Zagier formula, Ihara et al. (Can J Math 76:1–17, 2022) showed that a generating function of sums of interpolated multiple polylogarithms of Hurwitz type can be expressed in terms of the generalized hypergeometric function $${}_{r+1}F_r$$
r
+
1
F
r
. In this paper, we establish q- and elliptic analogues of this result. We introduce elliptic q-multiple polylogarithms of Hurwitz type and study a generating function of sums of them. By taking the trigonometric and classical limits in the main theorem, we can obtain q- and elliptic generalizations of the Ihara, Kusunoki, Nakamura and Saeki formula.
Publisher
Springer Science and Business Media LLC