Abstract
AbstractUsing Araki–Yamagami’s characterization of quasi-equivalence for quasi-free representations of the CCRs, we provide an abstract criterion for the existence of isomorphisms of second quantization local von Neumann algebras induced by Bogolubov transformations in terms of the respective one particle modular operators. We discuss possible applications to the problem of local normality of vacua of Klein-Gordon fields with different masses.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni
Sapienza Universitá di Roma
MIUR Excellence Department Project MathMod@TV
Universitá degli Studi di Roma Tor Vergata
Università degli Studi di Roma Tor Vergata
Publisher
Springer Science and Business Media LLC