Intensification of the steam stimulation process using bimetallic oxide catalysts of MFe2O4 (M = Cu, Co, Ni) for in-situ upgrading and recovery of heavy oil

Author:

AL-Rubaye Ameer H.,Suwaid Muneer A.,Al-Muntaser Ameen A.,Varfolomeev Mikhail A.,Rakhmatullin Ilfat Z.,Hakimi Mohammed H.,Saeed Shadi A.

Abstract

AbstractIn this study, bimetallic catalysts based on transition metals CuFe2O4, CoFe2O4 and NiFe2O4 are proposed for catalyzing aquathermolysis reaction during steam-based EOR method to improve in-situ heavy oil upgrading. All upgrading experiments were carried out under a nitrogen atmosphere for 24 h in a 300-ml batch Parr reactor at 250 and 300 °C under high pressure 35 and 75 bar, respectively. To evaluate the catalytic performance of the bimetallic catalysts used, comprehensive studies of changes in the physical and chemical properties of the improved oils, including the viscosity, elemental composition and SARA fractions of oils before and after upgrading processes were used. Furthermore, individual SARA fractions were characterized in detail by Gas Chromatography (GC), High-Performance Liquid Chromatography (HPLC) and Carbon-13 Nuclear Magnetic Resonance (13C NMR), respectively. The results showed that bimetallic catalysts have high catalytic performance at 300 °C for the upgrading of heavy crude oil in viscosity reduction, increasing the amount of saturates (especially alkanes with low carbon number) as a result of thermal decompositions of high molecular weight compounds like resin and asphaltenes leading to their increasing. Furthermore, the upgrading performance is reflected in the improvement of the H/C ratio, the removal of sulfur and nitrogen through desulfurization and denitrogenation procedures, and the reduction in polyaromatic content, etc. CoFe2O4 gives the best performance. Generally, it can be concluded that, used bimetallic based catalysts can be considered as promising and potential additives improving in-situ upgrading and thermal conversion the heavy oils.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3