A new workflow for warning and controlling the water invasion

Author:

Zhang Peijun,Fan Hairun,Wen Guangyao,Mu Lingyu,Cheng Weiheng,Wang Xiaochen,Gao Chengwu,Gong Xinglin,Zhao XurongORCID

Abstract

AbstractWarning and controlling the water invasion in water-driving reservoirs is significant because water invasion will seriously hamper well productivity and gas recovery. Unfortunately, there are few comprehensive methods to control water invasion. First, we establish and verify a water invasion model of reservoir scale. Then, a new workflow for warning and controlling the water invasion is proposed using the numerical simulation method. The workflow first judges the water invasion characteristics, determines the water invasion index based on the production data, and then controls the water invasion by finding and closing the perforation layer of serious water production. Finally, the optimal water control scheme is obtained by comparing water and gas production. The results show that the accuracy of the geological reserves of the established water invasion model is 99% and has a good pressure fitting result. The early warning chart for the gas reservoir in the west of Amu Darya B area is drawn, including the early warning pressure and the level 1, level 2, and level 3 early warning water–gas ratio, which is convenient for field application. For the water-driving wells west of area B, the early warning value of the water–gas ratio increases with the increase of gas production rate during fixed production and decreases with the increase of bottom hole pressure during constant pressure production. Closing the harmful perforation from the water-finding study will significantly reduce the water while retaining the gas production. After water control technology, water production decreased by 90.9%, while gas production decreased by only 9.7%.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3