Modeling fluid flow in fractured porous media: a comparative analysis between Darcy–Darcy model and Stokes–Brinkman model

Author:

Dudun AnirejuORCID,Feng Yin

Abstract

AbstractThere are limited comparative studies on modeling fluid transport in fractured porous media. Hence, this paper systematically compares the steady-state creeping flow Stokes–Brinkman and Darcy–Darcy models for computational efficiency and accuracy. Sensitivity analyses were also conducted on the effect of fracture orientations, fracture sizes, mesh resolution, and fractures with Local Grid Refinement (LGR) under the FEniCS computational framework. Both models were validated numerically, and the accuracy of their solution is compared using the R-squared metric and L2 norm estimates. Key results showed that both models have similar pressure and velocity field solutions for a given fracture orientation. The computational time required for solving the Stokes–Brinkman models for a single fracture case was unusually lower than that of the Darcy–Darcy model when the pressure and velocity terms in the Darcy–Darcy model were solved simultaneously using two equations, contrary to where only one equation solves for the pressure and the velocity is obtained by projecting the gradient of pressure onto a vector space. The Stokes–Brinkman model is more sensitive to mesh resolution, and as a result, the Darcy–Darcy model tends to be more accurate than the Stokes–Brinkman model at low resolutions. Local Grid Refinement (LGR) can improve the Stokes–Brinkman model's accuracy at low mesh resolution. Furthermore, both models showed similar results when compared for complex fracture systems such as multiple fracture cases: interconnecting and isolated fractured porous media systems under low-velocity and steady-state creeping flow conditions. The FEniCS code in this paper is shared for future researchers to reproduce results or extend the research work.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation of wormhole propagation in fractured carbonate rocks during acidizing using a simplified Stokes–Brinkman model;Journal of Petroleum Exploration and Production Technology;2024-08-12

2. ОБЗОР МОДЕЛИ СТОКСА-ДАРСИ;BULLETIN Series of Physics & Mathematical Sciences;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3